polyfit函数可以使用最小二乘法将一些点拟合成一条曲线.

numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
x:要拟合点的横坐标
y:要拟合点的纵坐标
deg:自由度.例如:自由度为2,那么拟合出来的曲线就是二次函数,自由度是3,拟合出来的曲线就是3次函数

首先我们先来构造一下需要被拟合的散点

x = np.arange(-1, 1, 0.02)
y = 2 * np.sin(x * 2.3) + np.random.rand(len(x))

然后打印一下看看

plt.scatter(x, y)
plt.show()

然后用polyfit函数来把这些点拟合成一条3次曲线

parameter = np.polyfit(x, y, 3)

输出的结果为3次方程的参数,我们可以像下面这样把方程拼接出来

y2 = parameter[0] * x ** 3 + parameter[1] * x ** 2 + parameter[2] * x + parameter[3]

将拟合后的结果打印一下

plt.scatter(x, y)
plt.plot(x, y2, color='g')
plt.show()

还可以使用poly1d()函数帮我们拼接方程,结果是一样的

p = np.poly1d(parameter)
plt.scatter(x, y)
plt.plot(x, p(x), color='g')
plt.show()
posted @ 2018-05-11 22:41:13
评论加载中...

发表评论